
String Functions

1-strcpy()

The strcpy() function in C++ is used to copy the

contents of one string (source) into another string

(destination). It is a part of the C-style string handling

functions in the <cstring> header.

Example

#include <iostream>

#include <cstring> // For strcpy()

void demonstrateStrcpy() {

 char source[] = "Hello, World!"; // Source string

 char destination[50]; // Ensure destination is

large enough to hold the source string

 // Copy source to destination

 strcpy(destination, source);

 // Output the strings

cout << "Source: " << source << endl;

 cout << "Destination: " << destination << endl;

}

int main() {

 demonstrateStrcpy();

 return 0;

}

Explanation:

1. Header File: Include <cstring> to access

strcpy().
2. Parameters:

o destination: A character array where the

string will be copied.
o source: The character array or string to copy

from.

3. Usage:
o Make sure destination is large enough to

hold source and the null-terminator (\0).
4. Null-Termination:

o strcpy() automatically appends the null-

terminator to the destination string.

Key Notes:

• Buffer Size: If the destination array is smaller

than the source string, it will lead to buffer

overflow, causing undefined behavior.

Use strcpy() with caution, especially when dealing

with dynamic or unpredictable string sizes.

2-strcmp()

The strcmp() function in C++ is a standard library

function used to compare two null-terminated C-style

strings (const char*). It is defined in the <cstring>
header. This function performs a lexicographical

comparison(مقارنة معجمية) and returns:

• 0 if both strings are equal.

• A value less than 0 if the first string is

lexicographically less than the second.
• A value greater than 0 if the first string is

lexicographically greater than the second.

Example:

#include <iostream>

#include <cstring>

void compareStrings(const char* str1, const char*

str2) {
 int result = strcmp(str1, str2);

 if (result == 0) {
 cout << "The strings \"" << str1 << "\" and \""

<< str2 << "\" are equal.\n";

 } else if (result < 0) {
 cout << "The string \"" << str1 << "\" is

lexicographically less than \"" << str2 << "\".\n";

 } else {
 cout << "The string \"" << str1 << "\" is

lexicographically greater than \"" << str2 << "\".\n";

 }
}

int main() {
 const char* string1 = "Apple";

 const char* string2 = "Banana";

 // Call the function to compare strings

 compareStrings(string1, string2);

 const char* string3 = "Orange";
 const char* string4 = "Orange";

 // Call the function to compare another set of
strings

 compareStrings(string3, string4);

 return 0;

}

Output:

The string "Apple" is lexicographically less than

"Banana".

The strings "Orange" and "Orange" are equal.

Notes:

• Always ensure the strings passed to strcmp() are

null-terminated.

3-strlen()

The strlen() function is used to calculate the length of

a null-terminated C-style string (not including the

null character \0).

Example:

#include <iostream>

#include <cstring> // Required for strlen

void demonstrateStrlen() {

 const char* str = "Hello, World!";

 // Use strlen to get the length of the string

int length = strlen(str);

 // Print the result

 cout << "The length of the string \"" << str << "\"
is: " << length << endl;

}

int main() {

 demonstrateStrlen();

 return 0;
}

Explanation:

1. Include <cstring>: The strlen() function is part

of the C standard library, so you need to include
<cstring>.

2. Define a C-style string: This is typically a const

char* or char array that is null-terminated.
3. Call strlen(): Pass the string to strlen(). It returns

the length of the string as a integer value.

4. Print the result: Display the computed length.

Notes:

• The strlen() function does not count the null-

terminator \0.
• Ensure the string passed to strlen() is null-

terminated to avoid undefined behavior.

For example:

#include <iostream>

#include <string>

void demonstrateStringLength() {

 string str = "Hello, World!";
 cout << "The length of the string \"" << str << "\"

is: " << str.length() << endl;

}

4- strcat()

The strcat() function in C++ is used to concatenate

(append) one C-style string (null-terminated character

array) to another. It is part of the <cstring> library.

Example :

#include <iostream>

#include <cstring> // For strcat

// Function to demonstrate strcat usage

void concatenateStrings(const char* str1, const char*

str2) {

 char result[100]; // Ensure this is large enough to

hold both strings and the null-terminator

 // Initialize result with str1

 strcpy(result, str1);

 // Concatenate str2 to result

 strcat(result, str2);

cout << "Concatenated String: " << result << endl;

}

int main() {

 const char* string1 = "Computer, ";

 const char* string2 = "Science!";

 concatenateStrings(string1, string2);

 return 0;

}

Explanation

1. #include <cstring>: Include the header file that

contains strcat() and related functions.
2. strcat(destination, source):

o Appends the contents of source to
destination.

o destination must have enough space to hold

the concatenated string.
3. Steps in the Code:

o Copy str1 into a buffer result using strcpy().

o Use strcat() to append str2 to result.

o Print the concatenated string.

Key Points to Remember

• Ensure the destination array is large enough to

hold both strings and the null-terminator (\0).
• strcat() does not perform bounds checking.

Using a buffer that is too small can lead to

undefined behavior (buffer overflow).
• Consider using safer alternatives like strncat() to

avoid overflow, especially when working with

user input.

5-isalnum()

The isalnum() function in C++ is part of the <cctype>

library. It checks whether a given character is

alphanumeric (a letter or a digit).

Syntax

#include <cctype>

int isalnum(int c);

• Parameter: c is the character to check, passed as

an int (often cast from char).

• Return Value: Returns a non-zero value (true) if

c is an alphanumeric character; otherwise, it

returns 0 (false).

Example

#include <iostream>

#include <cctype> // Required for isalnum()

// Function to check if a character is alphanumeric

void checkAlnum(char c) {

 if (isalnum(c)) {
 cout << c << " is alphanumeric.\n";

 } else {

 cout << c << " is not alphanumeric.\n";
 }

}

int main() {

 char testChar1 = 'A';

 char testChar2 = '1';
 char testChar3 = '#';

 checkAlnum(testChar1); // Output: A is
alphanumeric.

 checkAlnum(testChar2); // Output: 1 is
alphanumeric.

 checkAlnum(testChar3); // Output: # is not

alphanumeric.

 return 0;

}

Key Points

1. Alphanumeric Characters: Letters (a-z, A-Z)

and digits (0-9).

2. Non-alphanumeric characters such as
punctuation, symbols, or whitespace return false.

3. You can combine isalnum() with other <cctype>

functions like isalpha() and isdigit() for more

checks.

6-isalpha()

In C++, the isalpha() function is part of the <cctype>
header and is used to check if a given character is an

alphabetic letter (either uppercase or lowercase).

Here's an example function that demonstrates how to

use isalpha():

Example

#include <iostream>

#include <cctype> // For isalpha()

// Function to check if a character is alphabetic

void checkIfAlphabetic(char ch) {

 if (isalpha(ch)) {
 cout << ch << " is an alphabetic character." <<

endl;

 } else {
 cout << ch << " is NOT an alphabetic

character." << endl;

 }
}

int main() {

 char testChar1 = 'A';
 char testChar2 = '1';

 char testChar3 = 'z';

 // Test the function

 checkIfAlphabetic(testChar1);

 checkIfAlphabetic(testChar2);
 checkIfAlphabetic(testChar3);

 return 0;
}

Output:

A is an alphabetic character.

1 is NOT an alphabetic character.

z is an alphabetic character.

Explanation

1. Include <cctype>: This header contains the

declaration for isalpha() and other character-

handling functions.
2. Call isalpha(char): The function takes a single

char as an argument and returns:

o true (non-zero) if the character is alphabetic
(A-Z or a-z).

o false (0) otherwise.

Key Notes

• isalpha() only works with individual characters.

• To check strings, you can iterate through each

character and use isalpha() in a loop.

7- islower() and isupper

islower() and isupper() in C++ are used to check

whether a character is lowercase or uppercase,

respectively.

Example:

#include <iostream>

#include <cctype> // For islower() and isupper()

void checkCharacter(char ch) {

 if (islower(ch)) {

 cout << ch << " is a lowercase letter.\n";
 } else if (isupper(ch)) {

 cout << ch << " is an uppercase letter.\n";

 } else {
 cout << ch << " is not a letter.\n";

 }

}

int main() {

 char character;
 cout << "Enter a character: ";

 cin >> character;

 checkCharacter(character);

 return 0;}

Explanation:

1. Header <cctype>:

o The islower() function checks if a character
is a lowercase letter (a to z).

o The isupper() function checks if a character

is an uppercase letter (A to Z).
2. Function checkCharacter:

o Takes a character as input.

o Uses islower() and isupper() to determine
the character type.

o Prints the result.

Input/Output:

Example 1:

Input:

Enter a character: a

Output:

a is a lowercase letter.

Example 2:

Input:

Enter a character: Z

Output:

Z is an uppercase letter.

Example 3:

Input:

Enter a character: 1

Output:

1 is not a letter.

9- struper() & strlwr()

In C++, the strupr() and strlwr() functions are
typically not part of the C++ standard library, but

they are available in some compilers (like in the

Turbo C++ library). These functions convert a string

to uppercase (strupr()) or lowercase (strlwr()).

If you're using a compiler that doesn't have these
functions by default, you can implement similar

functionality using the standard C++ library.

Example

#include <iostream>

#include <cstring>

int main() {
 char str[] = "Hello World!";

 // Convert to uppercase using strupr()
 strupr(str);

 cout << "Uppercase: " << str << endl;

 // Convert to lowercase using strlwr()

 strlwr(str);

 cout << "Lowercase: " << str << endl;

 return 0;}

10-strchr()

The strchr() function in C++ is part of the C Standard

Library, defined in the <cstring> header, and is used

to find the first occurrence of a character in a C-style

string (null-terminated character array).

Example

Syntax:

char* strchr(const char* str, int character);

• str: The C-string in which to search.

• character: The character to search for. This is

passed as an int, but it is typically a char value.

Example:

#include <iostream>

#include <cstring>

int main() {

 const char* str = "Hello, world!";
 char ch = 'o';

 char* nullptr =Null;

 // Using strchr to find the first occurrence of 'o'
 char* result = strchr(str, ch);

 if (result != nullptr) {
 cout << "Character '" << ch << "' found at

position: "

 << (result - str) << endl;
 } else {

 cout << "Character '" << ch << "' not found!" <<

endl;
 } return 0;

}

Explanation:

• strchr(str, ch) searches for the first occurrence of
the character ch in the string str.

• If the character is found, strchr() returns a pointer

to the first occurrence of the character.
• If the character is not found, strchr() returns null.

• In the example, we use result - str to calculate the
position of the character in the string (i.e., the

index).

Output:

Character 'o' found at position: 4

Note:

When you use strchr() to find a character in a string,

it returns a pointer to the first occurrence of the

character. To determine the position (index) of the
character within the string, we subtract the base

pointer of the string (str) from the pointer returned by

strchr() (result).

Explanation of Pointer Arithmetic:

• str is a pointer to the first character of the string.

• result is a pointer to the first occurrence of the

character you are searching for in the string.

In C++, when you subtract two pointers that point to

elements of the same array (or string in this case), the
result is the difference in terms of the number of

elements between those pointers. This difference

corresponds to the index of the element in the array

or string.

Let's break down the subtraction result - str:

1. str points to the start of the string. If str = "Hello,

world!", then str points to the character 'H'.
2. result is the pointer returned by strchr(), which

points to the character where the character 'o' is

found. In the string "Hello, world!", the first 'o' is

at position index 4.

So, result points to the 'o' at index 4.

3. Now, when you subtract result - str, you are

calculating how far the result pointer is from the
str pointer. This distance is the index of the

character in the string.

In this case:

o result points to the 5th character in the string
(index 4).

o str points to the first character (index 0).

o So, result - str equals 4, which is the index

of the character 'o' in the string.

11-strstr()

In C++, the function strstr() is used to find the first
occurrence of a substring in a string. If the substring

is found, strstr() returns a pointer to the beginning of

the found substring; otherwise, it returns nullptr.

Example

#include <iostream>

#include <cstring> // For strstr()

int main() {

 const char* str = "Hello, welcome to the C++

world!";
 const char* substring = "welcome";

 // Use strstr to find the substring
 const char* result = strstr(str, substring);

 if (result != nullptr) {
 cout << "Substring found at position: " <<

(result - str) << endl;

 } else {
 cout << "Substring not found!" << endl;

 }

 return 0;

}

Explanation:

1. strstr(str, substring):

o str: The main string in which you want to
search.

o substring: The substring you're looking for.

o It returns a pointer to the first occurrence of
the substring, or nullptr if the substring is

not found.

2. result - str: This calculates the position of the
substring within the main string by subtracting

the base address of str from the pointer result.

Output:

Substring found at position: 7

This program checks if the substring "welcome" is

found in the main string "Hello, welcome to the C++
world!" and outputs the position where the substring

starts. If it's not found, it will output "Substring not

found!".

